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SINGULAR SPECTRUM OF STURM-LIOUVILLE OPERATORS 
UNDER LOCAL PERTURBATIONS 

By RAFAEL DEL R1o CASTILLO 

1. Introduction. Let us consider the selfadjoint realizations of the 
differential expression 

(lu)(x) = - u"(x) + q(x)u(x) x E [0, oo) 

where q is a real valued, locally integrable function defined in [0, cc). 
The endpoint 0 is regular and we assume that the limit point case occurs 
at oo. 

It was shown in [1] and [5] that if we vary the boundary condition 
at zero, that is, if we vary the selfadjoint realization of 1, then the 
spectrum can change from singular continuous to pure point. The related 
problem of whether local perturbations to the potential can change the 
nature of the spectrum in a similar way, is the subject of the present 
work. We shall see that Example 3 of [5] is a special case of our results 
when the local perturbation is identically zero. 

As far as Lemma 2, this work follows more less the same approach 
as [3] where it was proved that local perturbations can change singular 
continuous spectrum to absolutely continuous one. Beginning with 
Lemma 3 we move along a different sort of ideas which were in part 
inspired by [2]. The paper proceeds as follows. In Section 2 we use 
Gel'fand-Levitan's theorem to construct a differential operator L gen- 
erated by 1 with singular continuous spectrum, define the perturbed 
operator L and state the main result. In Section 3 we prove some lemmas 
which will help us to prove that some set does not contain enough of 
its limit points and it is therefore countable. In Section 4 we prove that 
this set is a support of the measure generated by the spectral function 
of the perturbed operator and from here it follows that L has pure point 
spectrum. 
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Abusing of the notation, we shall denote with the same symbol the 
Lebesgue-Stieltjes measure generated by a monotone function and the 
function itself. 

2. Statement of the main result.- We shall use the symbols C, R, 
R+ to denote the set of complex, real and nonnegative real numbers 
respectively. We utilize the usual notation for open intervals (a, b), 
closed intervals [a, b] and half open intervals (a, b] or [a, b), with end 
points a, b. 

Let p: R -- R be defined as follows 

'O if X&(-oo,0] 

p(A) = v(A) if A C (0, 1] 

1--+ 
2 

X-< if XE (1, oo) 
7r 7r 

where v(X) is the Cantor ternary function (see [14]). The function p is 
continuous and satisfies the conditions of the theorem of Gel'fand- 
Levitan (see [11]). Therefore there exists a potential 

q: R+ - R 

and cx C [0, 2-n) such that the operator L generated by the differential 
expression 

(lu)(x) = -u"(x) + q(x)u(x) 0 ' x < oo 

and the boundary condition 

u(0) cos u- + u'(0) sin u- = 0 

has p for its spectral function. 
Let v: R+- R be a continuous function with compact support 

S C R+. 
Let us define the selfadjoint operator L as the one generated by 

the differential expression: 

lu = -u" + {q(x) + v(x)}u x E [0, cc) 
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and the boundary condition 

u(0)cos 1 + u'(0)sin 1 = 0 1 E [0, 2rl). 

Let I := [0, 1]. Our main result is the following: 

THEOREM. If of =' 1 or v(-) * 0 a.e, then the operator L has only 
pure point spectrum in I. 

Since the operator L has by construction singular continuous spec- 
trum in I, the theorem asserts that if we change the boundary condition 
or if we perturb the potential locally then the singular continuous spec- 
trum disappears and we have only pure point spectrum. In the case 
v 0 this result has been known for comparatively long time. See [5] 
and a related result in [1]. 

3. Some lemmas. Before we prove the theorem we need some 
lemmas. The reals cx and 1 are defined as in the previous section. 

Consider a fundamental system {u1(x, z), u2(x, z)} of solutions of 

lUk = -u'(x) + q(x)uk(x) = ZUk(X) k = 1, 2 0 < x < oo 

which satisfy the conditions 

u1(0, z)cos ot + u'(0, z)sin t = 0 

u2(p, z) = sin y 

U2(p, Z) = -Cos y 

where p E R is such that S C [0, p), that is to say, p is to the right of 
the support of v(x) and y is a point of the open interval (0, a)j. 

Consider also a fundamental system {a4(x, z), fi2(x, z)} of solutions 
of 

lak = -C%(x) + {q(x) + V(X)}Uk = Zuk(X) 

k = 1, 2 0 ' x < ?o 

such that a1 and a2 satisfy the conditions 



206 RAFAEL DEL RIO CASTILLO 

u1(0, z)cos ,B + ui(0, z)sin 1B = 0 

u2(p, z) = sin y 

a2(p, Z) = -Cos Y. 

It is known (see [6]) that if z is nonreal, there is a function m(z) 
such that 

m(z)uI(x, z) + u2(x, z) E L2(0, oc). 

We call this function the Weyl-Titchmarsh-Kodaira coefficient 
(W.T.K. henceforth) of L with respect to {u1(x, z), u2(x, z)}. 

Let mh be the W.T.K. coefficient of L with respect to C1(x, z), 
a2(x, z). 

LEMMA 1. Let X E C be such that Im X > 0. 
Then we have 

m(X) 
m(A) = C1(A) - C2(X)m(X) 

where C1 and C2 are the following analytic functions 

CJ(X) = W(1 U2) (A) C~~=W(U 1, U2) 

C2(X) = W(01, uj) (X). 
WV(U2, U 1) 

For the proof see [3]. 
Let p and y be chosen as above. 
We define the operator La as the operator generated through the 

differential expression 

lu= -u"+q(x)u xE[0,p] 

and the boundary conditions 
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u(O)cos cx + u'(O)sin cx = 0 

u(p)cos y + u'(p)sin y = 0 'y E (0, 7r). 

Similarly we define the operator Lp as the operator generated by 
the differential expression 

lu = -u" + {q(x) + v(x)}u x E [0, P] 

and the boundary conditions 

u(O)cos 1 + u'(0)sin = 0 

u(p)cos y + u'(p)sin y = 0 y E (0, -nj. 

La and Lp are operators generated by differential expressions which 
are regular in [0, p] and therefore their spectra consist only of isolated 
eigenvalues. 

LEMMA 2. If La and Lp do not have exactly the same spectrum we 
have 

W("u1,) u1(x, A) * 0. 

The proof is similar to that of Lemma 2 of [3]. 
Let us define the following sets 

Sm = {e E R lim m(o) =oo} 

Sm = {e E R lim r(h)| = oo} 

A = {Xi, pi, yi E [0, 1] W(ul, u2)(Xi) = 0, 

W(i1, Ul)(pi) = 0, W(a1, U2)(Yj) = 0}. 

The analytic functions W(ul, u2)( ) and W(u1, a2)( ) cannot vanish 
identically since otherwise the selfadjoint operators La and Lp would 
have nonreal eigenvalues. If we assume that La and Lp do not have 
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exactly the same spectrum, then in virtue of Lemma 2 it follows that 
W(C1, u1)(-) do not vanish identically either. From now on we assume 
this is the case. At the end of Section 4 we shall give conditions which 
guarantee that both spectra are not identical. 

LEMMA 3. 

[Sm\A] n Sm = '. 

Proof. From Lemma 1 it follows that 

C1 (X) m h() 1 _ C1(X) 
(1) C|(X) - m(X) ih(X) C2(m) - C2(A) 

for every X E C with Im X > 0. 
If g E Sm\A we have lim, Im(AX) = oo and C2(() #= 0. 
This implies 

lim C (X) - m(A) |= c. 
x\--> C2(X) 

Since lim, I C1(X)/C2(X) I exists and is finite it follows from (1) that 

lim |h(X) + 
1 

= 0. 
C2(X) 

Therefore ? S,, and we have proved 

sm n [Sm\A] = (4. Q.E.D. 

From this it follows immediately that 

[Sm\A] n Sm = [Sm\A] n [Sm\A] = 

Let 

Dtp = lim p + E) p- E) 
E J 0 2E 
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be the symmetric derivative of p at the point (. 

Let us define the following sets 

Sm = EI I Dtp = m} 

Sm = {e II D4D = oo}. 

Here p denotes the spectral function of L. 

LEMMA 4. 

[Sn\A] C Sm and [S?\A] C S,. 

Proof. We know that (see [4]) 

-Im W 
h (U iE) i Im H(u + iE) 

E 
dp(2) 

W(a11, a12) (U + iE) U R2+E 

for u E I\A, where H is an analytic function which is real when the 
argument is real. 

From this it follows as in Lemma 7 of [3] that 

W (U( + iE) - Im H(u + iE) P(U +E) (U E) 
W(a1, a12) (U + iE) 2 

Hence 

[S,'\A] C Sm 

The other contention can be proved analogously. Q.E.D. 

From Lemma 4 it follows that 

[S'\A] C [Sm\A] 

and 

[Sm\A] C [Sm\A]. 
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From Lemma 3 we have 

[Sm\A] n [Sm\A] = . 

Therefore it follows that 

[Sm\A] n [Sm\A] = ( 

and 

(2) S, n [Sm\A] = (P 

Let c(T) denote the spectrum of the operator T. 

LEMMA 5. 

Sm C c(L) and Sm C a(L). 

Proof. We shall prove that 

&E Sm j> + E) - E(( - E) > 0 

for every E > 0. 
If ( E S' then 

lim ( + E) -( 
E ) = 

E j 0 2E 

Hence given M > 0 there exists k > 0 such that 0 < E < k implies 

i(( + E) - 0 (t 
- E) > M 

and therefore 

p + E) - E)( - E) > 2EM > 0 

for every E < k. 
Since p is a nondecreasing function the same follows for E -k. 
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We have proved that p is strictly increasing in (. This implies that 
u E(L), see [6]. The other contention follows analogously. Q.E.D. 

The essential spectrum of an operator T, denoted by aess(T) is the 
set of accumulation points of u(T). The absolutely continuous spectrum 
of T, denoted by ?ac(T) is defined as the spectrum of T restricted to its 
subspace of absolute continuity (see [10]). 

We have the following result 

LEMMA 6. 

(ress(L) = (Uess(L) and Oac(L) = Uac(L). 

Proof. Let A1 be the selfadjoint realization of 1 in [0, p] and let 
A1 be a selfadjoint realization of 1 in [0, pl. Let A2 be a selfadjoint 
realization of 1 in [p, oo). Since the differential expressions 1 and 1 are 
the same for x - p, A2 is also a selfadjoint realization of 1 in [p, cc). 

Let us consider the operators A1 (0 A2 and A1 0D A2 defined in the 
space L2(0, p) ED L2(p, c?). We have 

Uess(Al ED A2) = Uess(AI) U cess(A2) 

and 

Ojac(Ai 0) A2) = Orac(Ai) U (rac(A2). 

Similar equalities hold with A1 instead of A1. 
Since A1 and A1 have only discrete spectrum we have 

Ogess(Ai 0D A2) = aess(A2) = .Jess(Al 0 A2) 

and the same for the absolutely continuous spectrum. 
The resolvents of L and A1 0A2 differ by an at most 2-dimensional 

operator and the same happens with the resolvents of L and A1 0 A2. 
Therefore from Weyl's essential spectrum theorem (see [12], p. 112), it 
follows that cess(L) = Oess(Al 0D A2) and aiess(L) = Uess(AI 0 A2). 

From the results of scattering theory with trace class methods (see 
[13]) the same follows for the absolutely continuous spectrum. 
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Therefore we have 

Uess(L) = uess(Ai E A2) = Cess(A2) = Cess(Ai ED A2) = Uess(L) 

and the analogous result for ,ac. Q.E.D. 

Let C denote the Cantor ternary set. 

LEMMA 7. 

S'= C = .ess(L) n I. 

Proof. Let x C C and let {Em}'=1 be an arbitrary sequence con- 
verging to zero. For each Em there exists natural numbers M and n such 
that 

1 1 1 
3M m 3M + 1 3n 

holds. It can then be proven that 

V(X + Em) - V(X - Em) 1 3 
2Em 2n 1Em 2n+V 

When Em O 0 we must have n -- oo and from this it follows that 
the symmetric derivative of the Cantor function at the point x equals 
infinity. Therefore we have 

C C Sm. 

Now assume that x E I\C. Then for some E > 0 we have 

v(x + E) - v(x - E) = 0 

and therefore x o a(L), and from Lemma 5 it follows that x 0 C. 
Therefore we have proved S' = C. 

The other equality follows using Lemma 5 and the fact that C is a 
perfect set. Q.E.D. 
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4. Proof of the theorem. We shall prove first that the set S'- is 
countable. Let E be the set of limit points of S'-. From Lemma 5 we 
know that S'- C v(L). Since the spectrum is a closed set we have 

E C aess(L) 

and using Lemma 6 follows 

E C rOess(L) n I. 

Hence from Lemma 7 we obtain 

ECS = C. 

From here it follows that 

E nf St- c St f S-. 

Now 

s,- 
n s, = 

s,l 
n [(St'\A) U A] = 

[S'-, 
n [S \A]I U [S'- n A]. 

From (2) we have 

st, n s, = u u [st, n A] = S', n A. 

Therefore we obtain 

E n sf, c s,, n A. 

Since the points in A are roots of analytic functions it follows that 
E nl s1 is at most countable. 

Since an uncountable set contains always uncountable many of its 
limit points, (see [15], p. 45]) we have to conclude that S,' is at most 
countable. 

Now let T denote the operator L or L and let v be the corresponding 
spectral function. As before let I := [0, 1]. We say that a measure m 
is purely singular if it has a support of Lebesgue measure zero. A support 
is a set M such that m(X) = m(X n M) for every measurable set X. 
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LEMMA 8. I n uac(T) = (4 X T is purely singular in I. 

Proof. ) given f E L2(0, ??) we can write 

f = fs + fac 

where fs E Hs(T) and fac E Hac(T). Hac(Hs) denotes the subspace of 
absolute continuity (of singularity) with respect to T (see [10]). 

For every Borel set A C I it follows that 

mAA) = (E(A)f, f) = (E(A)(fs + fac), fs + fac) 

- (E(A)fs, f) + (E(A)fac, fs) + (E(A)fs, fac) + (E(A)fac, fac) 

where E(X) is the spectral family of T. 
Since Hac I Hs we have 

(E(A)f, f) = (E(A)fs, fs) + (E(A)fac, fac). 

The assumption I n gac(T) = ( implies (E(A)fac, fac) = 0, (see 
[11]). Therefore the measure 

mj-) ):= (E( -)f, f) 

is purely singular. 
Since for every Borel set A C I we can choose f, g E L2(0, oo) such 

that 

T(A) = (E(A)f, g) ' mf(A)I'21gll 

holds, it follows that T is purely singular too. 
<-) It is easy to see that for every f C L2(0,co) the measure mf is 

absolutely continuous with respect to T. Since T is purely singular this 
implies that mf( ) is purely singular for every f E L2(0, ??). Therefore 
for every f E Hac we have that mf 0. This implies 

I ng ac(T) = (t. Q.E.D. 

Proof of the theorem. Since p(X) is the Cantor ternary function 
for X E I we have that p is purely singular and therefore using Lemma 
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8 it follows that I ng Uac(L) = 4. Now from Lemma 6 we obtain that 
I n CUac(L) = 1 and from Lemma 8 again, it follows that p is purely 
singular. 

Now denote by Dtp the upper and by Ddp the lower symmetric 
derivative of p at a point t, these being defined respectively as the upper 
and as the lower limit of the ratio 

p(t + E) - P(t - E) 

2E 

where E tends to zero. 
Let A._denote the set of points $ E I at which one at least of the 

derivatives D4p and Dtp is infinite, then for any bounded set X which 
is measurable we have 

p(x) = p(X n A.) + x p'(x)dx. 

For the proof of this see [16, p. 151]. 
Now since p is singular we have 

p(x) = p(x n A-). 

Clearly S' C A.. Let J: = AoA\S,',. It is easy to see that p is continuous 
for every point in J. Therefore from [15, p. 1251 it follows that 

P(J) = 0. 

Then we have 

p(x) = p(x n [s, U J]) 

= p(X n St) + p(x n J) 

= p(x n st-). 

Therefore S'- is a support of p. 
Since S'- is at most countable it follows that p is discrete. Hence 
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the spectrum of L in I contains a set of eigenvalues which is dense in 
the Cantor set C. 

Up to this point we have assumed u(La)l/ u(Lp). Now to finish 
the proof of the theorem we shall give conditions which imply this 
assumption. 

In Hald [7] the following result is proven: 
Consider the eigenvalue problems 

(3) -u" + q(x)u = Xu 

hu(O) - u'(O) = 0, Hu(,r) + u'(-r) = 0 

(4) -u" + q(x)u = Xu 

hu(0) - u'(0) = 0, Hu(-(') + U'('r) = 0 

where q and q are integrable on [0, ar]. Let Xj and A, be the eigenvalues 
of equations (3) and (4) and assume that Xj = A, for all j. If q(x) = 
j(x) for almost all x in the interval rr/2 ? x ? -r and if H = H, then 
q(x) = #(x) almost everywhere and h = h. 

Now choose p E R such that S C (0, (1/2)p) where S is the support 
of the perturbation v. By scaling we can take in the above result [0, pI 
instead of [0,-r] and #(x) = q(x) on [(1/2)p, p] instead of j(x) = q(x) 
on [rr/2, IT]. Assuming a #= 0, 1 #= 0 we can therefore conclude the 
following: If a # 13 or if v(x)/ 0 a.e. then La and Lp do not have the 
same spectrum. 

When cx = 1 = 0 the same follows using a result of Hochstadt- 
Lieberman [8]. 

In the case x = 0, 1 # 0 or cx 0, 13 = 0 it can be seen from the 
asymptotic behavior of the eigenvalues (see for example Remark 1 of 
[9]) that u(La) * u(Lp). 

Thus the theorem is completely proven. Q.E.D. 

Remark. If in [3] we define La and Lp as it was done in this work, 
the results of [3] can be generalized in the obvious way. 

UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO 
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